

About ASC 150 Storage

Use the **ASC 150 Storage** as a **single** controller to add a storage system to an existing site, or with other DEIF controllers in a **power/energy management system**. The controller optimises the battery power, to **save fuel** and maximise green penetration.

Each controller controls and protects an energy storage system (ESS) with communication to a BMS, BCU, and/or a PCS. The controller is **plug-and-play**, and **easy to customise** (with the user-friendly M-Logic tool). You can **easily scale up** from a single controller, to a PMS with a variety of controllers and up to 32 storage controllers.

Grid-forming or -following

The controller uses the PCS and BCU:

- **Grid-forming** (island or V/f mode)
 - The battery acts as the only energy source.

The battery provides the grid-forming power in island operation. It works with non-grid-forming sources, like solar and wind.

Gensets: Stopped if the load level, battery capacity, and state of charge conditions are fulfilled. When the battery is discharged or more power is needed, the gensets are reconnected. The controller can also suppress genset starts from spinning reserve requests.

 Grid-following (parallel or P/Q mode) The battery is always connected to another grid-forming source, like a mains or genset. The battery is used as a power buffer, providing

spinning reserve and peak shaving.

 Droop mode (if the ESS supports this) The controller controls the storage charge and discharge using V/f or P/Q set points from the configured droop curve (that is, like a virtual synchronous generator (VSG)).

Droop mode is possible for both grid-forming and grid-following.

Energy or power source

Energy source

The ASC 150 Storage controller prioritises battery power over genset power.

The system uses as much battery power as possible before starting any genset.

Power source

The ASC 150 Storage controller operates in parallel to other sources.

Genset power is prioritised over battery power. This mode is used to ensure that spinning reserve requirements are met.

Storage features

	Extended	Premium
Energy storage breaker (ESB) control	•	•
Energy usage monitoring	•	•
Power management	•	•
Reactive power control		•

Single controller

- Useful for rental and brownfield applications
- Automatically charges and discharges the ESS
- Optimises the diesel genset load for high efficiency and low carbon footprint
- Requires **power measurement** and breaker feedback for other power sources
 - **Only one source**: Can use the controller's 4th current measurement.
 - **Multiple power sources**: Measurements from:
 - Genset controllers (DEIF or third parties)
 - Power meters
 - Transducers
- Power management communication is not required

Power management

- Automatically charges and discharges the ESS
- Automatically uses the ESS as spinning reserve for PV and microgrids
- Automatically starts and stops generators
- Automatically closes and opens breakers
- Optimises the diesel genset load for high efficiency and low carbon footprint
- Optimises the fuel consumption
- Balances the loads in the system
- Uses the plant logic
- Makes sure that the system is safe

ASC 150 Storage Application examples

Single controller

Emission-free power rental solution with a single ESS

Maximum number of gensets for a single controller: 4 (Extended) or 16 (Premium)

Power management

Peak shaving application

ASC 150 Storage Wiring, communication and compatibility

Typical wiring

Communication

BCU control, BCU and PCS control, BMS control

- Modbus RTU (RS-485)
- Modbus TCP (Ethernet)

Power meters

Modbus RTU (RS-485)

Other DEIF controllers

- CAN bus
- Ethernet

Compatibility

BCU control/BCU and PCS control/BMS control

- Supports more than 20 different systems
- Supports a wide range of manufacturers

Power meters

- Genset controllers (DEIF or third parties)
- Power meters
- Transducers

More information

See **DEIF hybrid controller compatibility** for all the compatible BCU, PCS, BMS and power meters.

AC measuring

- Voltage: 100 to 690 V phase-to-phase (10 to 135 %), ±1 %
- Current: -/1 A or -/5 A (2 to 300 %), ±1 %
- Frequency: 3.5 to 75 Hz
- Power: ±1 %

Power supply

- Nominal voltage: 12/24 V DC
- Operating range: 6.5 to 36 V DC
- Load dump protection: ISO16750-2
- Measuring range: 0 to 36 V DC

Inputs and outputs

- Digital inputs: 12 x (max. +36 V, min. -24 V)
- Digital outputs:
 - 2 x (15 A inrush, 3 A continuously)
 - 10 x (2 A inrush, 0.5 A continuously)
 - Common: 12/24 V DC
- 4 x analogue inputs
- 2 x analogue outputs
- CAN bus A and B
- RS-485 1 and 2
- RJ-45 Ethernet
- USB (service port)

Environment

- Operating temperature: -40 to +70 °C (-40 to +158 °F)
- Storage temperature: -40 to +85 °C (-40 to +185 °F)
- Altitude: 0 to 4000 m
- Humidity: 20/55 °C at 95 % RH
- Protection degree: IP65 in panel, IP20 on terminals
- Pollution degree 2
- Self-extinguishing plastic

Approvals

• CE

More information

See www.deif.com for the most recent approvals.

Protections

2 x Fast over-current	ANSI 50P
4 x Over-current	ANSI 51
1 x Voltage-dependent over-current	ANSI 51V
2 x Over-voltage	ANSI 59P
3 x Under-voltage	ANSI 27P
3 x Over-frequency	ANSI 810
3 x Under-frequency	ANSI 81U
1 x Unbalanced voltage	ANSI 47
1 x Unbalanced current	ANSI 46
1 x Under-excitation or var import	ANSI 32RV
1 x Over-excitation or var import	ANSI 32FV
5 x Overload	ANSI 32F
1 x Neutral current	ANSI 51N
3 x Busbar over-voltage	ANSI 59P
4 x Busbar under-voltage	ANSI 27P
3 x Busbar over-frequency	ANSI 810
3 x Busbar under-frequency	ANSI 81U
1 x Emergency stop	ANSI 1
1 x Low auxiliary supply	ANSI 27DC
1 x High auxiliary supply	ANSI 59DC
1 x ES breaker external trip	ANSI 5
Synchronisation failure alarms	ANSI 25
Breaker open failure	ANSI 52BF
Breaker close failure	ANSI 52BF
Breaker position failure	ANSI 52BF
1 x Phase sequence error	ANSI 47
1 x De-load error	ANSI 34
1 x Hz/V failure	NSI 53
1 x Not in Auto	ANSI 34

For more information: DEIF A/S

Frisenborgvej 33, 7800 Skive, Denmark Tel.: +45 9614 9614, info@deif.com https://www.deif.com

